Dynamic force spectroscopy of single DNA molecules.
نویسندگان
چکیده
To explore the analytic relevance of unbinding force measurements between complementary DNA strands with an atomic force microscope, we measured the forces to mechanically separate a single DNA duplex under physiological conditions by pulling at the opposite 5'-ends as a function of the loading rate (dynamic force spectroscopy). We investigated DNA duplexes with 10, 20, and 30 base pairs with loading rates in the range of 16-4,000 pN/s. Depending on the loading rate and sequence length, the unbinding forces of single duplexes varied from 20 to 50 pN. These unbinding forces are found to scale with the logarithm of the loading rate, which is interpreted in terms of a single energy barrier along the mechanical separation path. The parameters describing the energy landscape, i.e. , the distance of the energy barrier to the minimum energy along the separation path and the logarithm of the thermal dissociation rate, are found to be proportional to the number of base pairs of the DNA duplex. These single molecule results allow a quantitative comparison with data from thermodynamic ensemble measurements and a discussion of the analytic applications of unbinding force measurements for DNA.
منابع مشابه
Force Spectroscopy of DNA and RNA: Structure and Kinetics from Single-Molecule Experiments
Force spectroscopy of individual DNA and RNA molecules provides unique insights into the structure and mechanics of these for life so essential molecules. Observations of DNA and RNA molecules one at a time provide spatial, structural, and temporal information that is complementary to the information obtained by classical ensemble methods. Single-molecule force spectroscopy has been realized on...
متن کاملSingle molecule force spectroscopy studies of DNA denaturation by T4 gene 32 protein
Single molecule force spectroscopy is an emerging technique that can be used to measure the biophysical properties of single macromolecules such as nucleic acids and proteins. In particular, single DNA molecule stretching experiments are used to measure the elastic properties of these molecules and to induce structural transitions. We have demonstrated that doublestranded DNA molecules undergo ...
متن کاملConfinement spectroscopy: probing single DNA molecules with tapered nanochannels.
We demonstrate a confinement spectroscopy technique capable of probing small conformational changes of unanchored single DNA molecules in a manner analogous to force spectroscopy, in the regime corresponding to femtonewton forces. In contrast to force spectroscopy, various structural forms of DNA can easily be probed, as indicated by experiments on linear and circular DNA. The extension of circ...
متن کاملEffector-stimulated single molecule protein-DNA interactions of a quorum-sensing system in Sinorhizobium meliloti.
Intercellular communication by means of small signal molecules coordinates gene expression among bacteria. This population density-dependent regulation is known as quorum sensing. The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti Rm1021 possesses the Sin quorum sensing system based on N-acyl homoserine lactones (AHL) as signal molecules. Here, we demonstrate that the LuxR-type regu...
متن کاملFemtonewton force spectroscopy of single extended DNA molecules.
We studied the thermal fluctuations of single DNA molecules with a novel optical tweezer based force spectroscopy technique. This technique combines femtonewton sensitivity with millisecond time resolution, surpassing the sensitivity of previous force measurements in aqueous solution with comparable bandwidth by a hundredfold. Our data resolve long-standing questions concerning internal hydrody...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 96 20 شماره
صفحات -
تاریخ انتشار 1999